Toward Aerodynamic Optimization of
Complex Configurations

Arron Melvin
Advisor: Luigi Martinelli
Princeton University

FAA/NASA Joint University Program for Air Transportation

Quarterly Review
Ohio University, Athens, OH
June 13, 2002




Motivation

* Aerodynamic Development Typically “cut&try”
— Slow (design time doing detailed design iterations)
— Expensive
— Relies on physical insight of designer for changes

* Automatic design to reduce time 1n detail
design phase
— Improved performance

— Decreased costs



e The progress of the design procedure is measured in terms of a cost
function f, representative of some appropriate aerodynamic properiies
(.e. drag, target pressure distribution, etc.) which are functions of the
flow-field variables (w) and the shape of the boundary F. Then

I =1(wF),
and a change in JF resulis in a change of the cost:
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e Using control theory, the governing equations of the flow field are In-
troduced as a constraint in such a way that the final expression for the
gradient does not require multiple flow solutions. This corresponds to
eliminating dw from (1).

Reference: Jameson, Martinelli, Alonso, Vassberg, Reuther



Suppose that the governing equation B which expresses the dependence

of «» and F within the flow-field domain D can be written as

R (w,F)=0.
Then dw is determined from the equation
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Next, infroducing a Lagrange Multiplier ¢, we have
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Reference: Jameson, Martinelli, Alonso, Vassberg, Reuther
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Choosing 2 to satisfy the adjoint equation
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the first term is eliminated, and we find that
51 = G5F, (6)
where
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An improvement can be made|with a shape change
§F = —\GT

where A is small and positive. The variation in the cost function then
becomes

5] = —XGT'G < 0.

The process is repeated to follow a path of steepest descent until a mini-
mum Is reached.

Reference: Jameson, Martinelli, Alonso, Vassberg, Reuther



e Equation (6) Is independent of 4w, with the result that the gradient
of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations.

e In the case that (2) is a partial differential equation, the adjoint equation
(5) Is also a partial differential equation. Thus the computational cost
of a single design cycle is roughly equivalent to the cost of two flow
solutions since the the adjoint problem has similar complexity.

e When the number of design variables becomes large, the computa-
tional efficiency of the control theory approach overtraditional approach,
which requires direct evaluation of the gradients by individually varying
each design variable and recomputing the flow field, becomes com-

pelling.

Reference: Jameson, Martinelli, Alonso, Vassberg, Reuther



Design Procedure

. Solve the flow equations for r, u,, u,, us;, p

2. Solve the adjoint equations for y subject to

appropriate boundary conditions
. Evaluate the gradient G

. Project G into an allowable subspace that satisfies
any geometric constraints

. Update the shape based on the direction of
steepest descent
. Return to step 1 until convergence is reached



Adjoint Methods Applied Successfully to Optimize
Transonic and Supersonic Configurations
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Reference: Martinelli, Reuther, Alonso, Rimlinger, Jameson



Automatic Redesign of 747 — Wing/Body

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
BOEING 747 WING-BODY
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Reference: Jameson, Martinelli



Transonic Performance

Healf-Thickness

affected by small changes

Reference: Jameson, Martinelli
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Airfoil Geometry -- Camber & Thickness Distributions

SYMBOL AIRFCIL ETA R-LE Tavg Tmax @X%
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Adjoint based optimization
has been applied to full
configurations

Baseline Design

Transonic Multipoint Design
M=0.82, C,=0.30 shown

Dpptimized Design

Reference: Jameson, Martinelli, Alonso, Vassberg, Reuther



Mesh Type Comparison

e Structured
— More developed flow solvers
— Greater computational efficiency

e Unstructured

— Ease of construction for complex
configurations

— Efficiency of point placement



Multiblock Structured

Unstructured
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Work Plan

e Flow & adjoint solvers are in place
(Jameson & Martinelli)

o Write gradient formulation

e Shape modification

— More general than point movement
— Integration with CAD




Single Block Structured Mesh




